منابع مشابه
Transformational silicon electronics.
In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication ...
متن کاملSilicon nanomembranes for fingertip electronics.
We describe the use of semiconductor nanomaterials, advanced fabrication methods and unusual device designs for a class of electronics capable of integration onto the inner and outer surfaces of thin, elastomeric sheets in closed-tube geometries, specially formed for mounting on the fingertips. Multifunctional systems of this type allow electrotactile stimulation with electrode arrays multiplex...
متن کاملSilicon Nanowires and Silicon/molecular Interfaces for Nanoscale Electronics
of the thesis The thesis describes the realization of high-performance silicon nanowire (Si NW) logic circuits and a novel surface modification technique for nanoscale electronics applications. First, doped Si NWs were generated via the superlattice nanowire pattern transfer (SNAP) process, forming aligned, uniform, ultra-dense NW arrays. The NWs served as the channel material for field-effect ...
متن کاملVii. Quantum Electronics
The primary objective in this program is the development of an extremely stable, low-jitter, single-frequency cw dye laser for use in a variety of applications such as optical communication and ultrahigh-resolution spectroscopy, and for studying fundamental interactions between radiation and matter. During the past year we have been concerned with the short-term stabilization of commercially av...
متن کاملFast flexible electronics with strained silicon nanomembranes
Fast flexible electronics operating at radio frequencies (>1 GHz) are more attractive than traditional flexible electronics because of their versatile capabilities, dramatic power savings when operating at reduced speed and broader spectrum of applications. Transferrable single-crystalline Si nanomembranes (SiNMs) are preferred to other materials for flexible electronics owing to their unique a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Reviews of Modern Physics
سال: 2013
ISSN: 0034-6861,1539-0756
DOI: 10.1103/revmodphys.85.961